z-logo
open-access-imgOpen Access
Determining Remaining Lifetime of Wind Turbine Gearbox Using a Health Status Indicator Signal
Author(s) -
Roberto Lázaro,
Nurseda Y. Yürüşen,
Julio Melero
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1618/2/022037
Subject(s) - turbine , wind power , preventive maintenance , reliability engineering , computer science , smoothing , predictive maintenance , engineering , mechanical engineering , electrical engineering , computer vision
Wind turbine component’s failure prognosis allows wind farm owners to apply predictive maintenance techniques to their fleets. This permits optimal scheduling of the maintenance actions considering the best time to stop the turbines and perform those actions. Determining the health status of a turbine’s component typically requires verifying a wide number of variables that should be monitored simultaneously. The scope of this study is the investigation and the selection of an effective combination of variables and smoothing and forecasting methodologies for obtaining a wind turbine gearbox health status indicator, in order to interpret clearly the remaining lifetime of the gearbox. The proposed methodology is based on Gaussian Mixture Copula Model (GMCM) models combined with the smoothing treatment and the forecasting model to define the health index of the wind turbine gearbox. Then, the resulting index is tested using various warning and critical thresholds. These thresholds should be chosen adequately in order to indicate appropriate inspection visit and preventive maintenance intervention date. Then, the best combination found, for the studied cases, was 50% and 70% for warning and critical respectively. This combination ensures that the developed procedure is capable of providing long enough time window for maintenance decision making.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here