
Traffic Sign Recognition with Neural Networks in the Frequency Domain
Author(s) -
Florian Franzen,
Chunrong Yuan,
Li Zhong
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1576/1/012015
Subject(s) - traffic sign recognition , traffic sign , artificial neural network , computer science , sign (mathematics) , domain (mathematical analysis) , feature (linguistics) , time delay neural network , set (abstract data type) , frequency domain , pattern recognition (psychology) , speech recognition , artificial intelligence , computer vision , mathematics , mathematical analysis , linguistics , philosophy , programming language
In this paper we describe traffic sign recognition with neural networks in the frequency domain. Traffic signs exist in all countries to regulate the traffic of vehicles and pedestrians. Each country has its own set of traffic signs that are more or less similar. They consist of a set of abstract forms, symbols, numbers and letters, which are combined into different signs. Automatic traffic sign recognition is important for driver assistance systems and for autonomous driving. Traffic sign recognition is a subtype of image recognition. The traffic signs are usually recorded by a camera and must be recognized in real time, i.e. assigned to a class. We use neural networks for traffic sign recognition. The special feature of our method is that the traffic sign recognition does not take place in the spatial domain but in the frequency domain. This has advantages because it is possible to significantly reduce the number of neurons and thus the computing effort of the neural network compared to a conventional neural network.