
Application of a Novel and Improved VGG-19 Network in the Detection of Workers Wearing Masks
Author(s) -
Jianguo Xiao,
Jia Wang,
Shiwei Cao,
Bilong Li
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1518/1/012041
Subject(s) - softmax function , convolutional neural network , computer science , artificial intelligence , recall , precision and recall , classifier (uml) , test set , deep learning , pattern recognition (psychology) , training set , machine learning , linguistics , philosophy
In order to work and travel safely during the outbreak of COVID-19, a method of security detection based on deep learning is proposed by using machine vision instead of manual monitoring. To detect the illegal behaviors of workers without masks in workplaces and densely populated areas, an improved convolutional neural network VGG-19 algorithm is proposed under the framework of tensorflow, and more than 3000 images are collected for model training and testing. Using VGG-19 network model, three FC layers are optimized into one flat layer and two FC layers with reduced parameters. The softmax classification layer of the original model is replaced by a 2-label softmax classifier. The experimental results show that the precision of the model is 97.62% and the recall is 96.31%. The precision of identifying the workers without masks is 96.82%, the recall is 94.07%, and the data set provided has a high precision. For the future social health and safety to provide favorable test data.