
A rigid elliptical cross-sectional projectile with different geometrical characteristics penetration into concrete target
Author(s) -
Xianghui Dai,
Kehui Wang,
Jian Duan,
M. R. Li,
Qian Bingwen,
Gang Zhou
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1507/3/032001
Subject(s) - projectile , penetration (warfare) , conical surface , mechanics , penetration depth , penetration test , materials science , structural engineering , physics , optics , composite material , mathematics , engineering , asphalt , operations research , metallurgy
Elliptical cross-sectional projectiles have recently attracted attention because they fit the flattened shape of earth-penetrating weapons. This study aims to investigate a rigid elliptical cross-sectional projectile with different geometrical characteristics penetration into the semi-infinite concrete targets by implementing a theoretical method. The general geometric models of four types of elliptical cross-sectional projectiles are introduced; closed-form penetration equations are then derived based on the dynamic cavity-expansion theory. Furthermore, the present models are validated by comparing the predicted penetration depths with the predictions obtained using the semi-empirical formulae and test data; the maximum deviation from the test data is 15.8%. In addition, the deceleration, velocity, and displacement of the projectiles during the penetration process are obtained based on the present models, and the penetration performance of the four types of elliptical cross-sectional projectiles is discussed by comparing the penetration depths. The conical-nose elliptical cross-sectional projectile exhibits the best penetration performance than the other three types if the nose length is sufficiently large, and the ogive-nose elliptical cross-sectional projectile gradually exhibits its penetration performance advantage with the increase in the nose length.