
Near-field scanning magneto-photoluminescence of composite fermions in In(Ga)P/GaInP quantum dots
Author(s) -
A. M. Mintairov
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1461/1/012106
Subject(s) - composite fermion , landau quantization , quantum dot , magnetic field , photoluminescence , condensed matter physics , physics , field (mathematics) , filling factor , radius , quantum hall effect , quantum spin hall effect , quantum mechanics , optoelectronics , mathematics , computer security , pure mathematics , computer science
We measured spatial and magnetic field dependence of photoluminescence (PL) spectrum of In(Ga)P/GaInP quantum dots (QDs) having up to 8 electrons and quantum confinement ħω 0 down to 2 meV using low temperature (10K) near-field scanning optical microscope (NSOM) providing spatial resolution ∼20 nm and external magnetic field up to B 0 =10 T. Using these measurements we identified QDs having Wigner-Seitz radius up to 2 and internal magnetic field B int up to 15 T, corresponding to Landau level filling factor v at zero field ν 0 3, 5/2, 2/5 and 1/5. In magneto-PL spectra we observed features related to integer and fractional quantum Hall states and identified composite fermion (CF) states corresponding to Wigner molecule isomers (1, 5) and (0, 6). Our results demonstrate perspectives of using In(Ga)P/GaInP QD structures, providing deterministic localization of CFs in zero external magnetic field, in “magnetic-field-free” topological quantum gates.