
Irreducible Cartesian multipole decomposition of scattered light with explicit contribution of high order toroidal moments
Author(s) -
Egor A. Gurvitz,
Konstantin Ladutenko,
Pavel Dergachev,
Andrey B. Evlyukhin,
Andrey E. Miroshnichenko,
Alexander S. Shalin
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1461/1/012054
Subject(s) - multipole expansion , toroid , quadrupole , cartesian coordinate system , physics , method of moments (probability theory) , scattering , quadrupole magnet , quantum electrodynamics , dielectric , computational physics , optics , mathematics , atomic physics , quantum mechanics , geometry , plasma , statistics , estimator
Multipole decomposition is a powerful tool for analysis of electromagnetic systems. This work considers high order irreducible Cartesian multipole moments in approximation of electric 32-pole and magnetic 16-pole. The explicit contributions to scattering of high order toroidal moments up to toroidal electric octupole and toroidal magnetic quadrupole are demonstrated for a dielectric high refractive index scatterer.