z-logo
open-access-imgOpen Access
A Simulation Study Of Tubercles Effect Of Aerodynamics Performance On Car Rear Spoiler
Author(s) -
Halim Ghaffar,
H. Yusoff,
Dahlia Ibrahim,
Salina Budin,
Mohamed Razeef Abd Razak
Publication year - 2019
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1349/1/012034
Subject(s) - airfoil , chord (peer to peer) , aerodynamics , trailing edge , leading edge , angle of attack , wing , flapping , structural engineering , aerospace engineering , acoustics , physics , engineering , marine engineering , computer science , distributed computing
The tubercle effect is a recently discovered phenomenon where the sinusoidal pattem ‘bumps’ on the leading edge of an airfoil can improve the aerodynamic performance. This effect was inspired by looking at the humpback whale pectoral flippers that give an exceptional acrobatic manoeuvrability in the water such as somersaults, also allowing for easier capture of prey. The objective of this research is to study the effect of implementing the tubercles concept on the car spoiler in order to see whether it bring advantage or disadvantage in the aerodynamic performance of a car. The design and simulation process are done by using Solidworks. The design of airfoil spoiler based on Selig S2091 (low Reynolds number airfoil) with sinusoidal pattern leading edge were computationally used. The Airfoil spoiler with 270 mm of the chord length (C), 1200 mm wingspan (L) and angles of attack of -5°, 0°, 5°, 10°, 15°, 20°, 25°, 30° were improvised with tubercles at 40 mm amplitude of bumps (h) and the distance of the wavelength between peaks (λ) of 1200 mm, 240 mm and 133.33 mm. The simulation was tested at 40 m/s. The investigation shown that the tubercles can improve the aerodynamic performance of car rear spoiler where the tubercles are able to increase the lift coefficient but has a significant decrease in drag only at 20° and above angle of attack.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here