
Empirical performance of GARCH, GARCH-M, GJR-GARCH and log-GARCH models for returns volatility
Author(s) -
Didit Budi Nugroho,
Dini Kurniawati,
Lam Peter Panjaitan,
Zaini Kholil,
Bambang Susanto,
Leopoldus Ricky Sasongko
Publication year - 2019
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1307/1/012003
Subject(s) - autoregressive conditional heteroskedasticity , volatility (finance) , econometrics , economics , mathematics
Volatility plays an important role in the field of financial econometrics as one of the risk indicators. Many various models address the problem of modeling the volatilities of financial asset returns. This study provides a new empirical performance comparison of the four different GARCH-type models, namely GARCH, GARCH-M, GJR-GARCH, and log-GARCH models based on simulated data and real data such as the DJIA, S&P 500, and S&P CNX Nifty indices on a daily period from January 2000 to December 2017. We also investigate the estimation results obtained using Solver’Excel and verify those results against the results obtained using a Markov chain Monte Carlo method. The simulation study showed that the GARCH model is outperformed by other models. Meanwhile, the empirical study provides evidence that the GJR-GARCH model provides the best fitting, followed by the GARCH-M, GARCH, and log-GARCH models. Furthermore, this study recommends the use of Excel’s Solver in practice when the parameter estimates for GARCH-type model do not close to zero.