
Francis-99: Coupled simulation of the resonance effects in runner channels
Author(s) -
Erik Os Tengs,
Live Salvesen Fevåg,
Pål-Tore Selbo Storli
Publication year - 2019
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1296/1/012005
Subject(s) - mechanics , compressibility , shroud , resonance (particle physics) , physics , fluid–structure interaction , trailing edge , impeller , acoustics , acoustic resonance , structural engineering , engineering , finite element method , particle physics , thermodynamics
A resonance phenomenon is observed experimentally in the runner channels of the Francis-99 model turbine runner. An incompressible CFD simulation is unable to simulate this. Two different coupled physics schemes are therefore presented to investigate if such effects can be replicated through simulations. The first procedure is a fully coupled acoustic-structural simulation, where the surrounding fluid is modelled using acoustic theory. This includes added mass effects and pressure propagation, but not advective and viscous effects. The second procedure is a quasi two-way coupled Fluid-Structure approach based on modal decomposition of the structural domain. In this procedure, the incompressible Navier-Stokes equations are solved along with the structural deformation. The fully coupled acoustic-structural approach does successfully exhibit a magnification of the pressure through the runner channels, indicating a resonance effect. The exact values of the acoustic pressure amplitudes are highly sensitive to the damping, the blade connection to the shroud close to the trailing edge, and more. The second procedure manages to simulate the structural deformation with the correct nodal diameters excited by the Rotor Stator Interaction, all inside the fluid solver. The pressure amplitudes however, does not exhibit the desired resonance effect, likely due to the assumption of incompressible fluid.