
Testing spontaneous collapse models with mechanical experiments
Author(s) -
Andrea Vinante
Publication year - 2019
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1275/1/012015
Subject(s) - quantum , wave function collapse , physics , unitary state , mechanical system , statistical physics , measurement problem , focus (optics) , classical mechanics , quantum mechanics , theoretical physics , open quantum system , quantum operation , computer science , optics , artificial intelligence , political science , law
Spontaneous collapse models (CM) have been proposed as a possible solution of the quantum measurement problem. In CM the unitary evolution of the wave function is modified by stochastic corrections which lead to a dynamical reduction at macroscopic level. Unlike interpretations of quantum mechanics, CM predict departures from standard theory that can be experimentally tested. Here, we focus on one of these predictions, a universal force noise acting on any mechanical system. In particular, we discuss recent bounds on collapse models set by ultracold cantilevers experiments and gravitational wave detectors. First notable results are a partial exclusion of the CSL parameters proposed by Adler and a full exclusion of an early model based on quantum gravity ideas.