
Review of Intent Detection Methods in the Human-Machine Dialogue System
Author(s) -
Jiao Liu,
Yanling Li,
Min Lin
Publication year - 2019
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1267/1/012059
Subject(s) - computer science , task (project management) , artificial intelligence , human–machine system , deep learning , natural language processing , deep neural networks , artificial neural network , machine learning , engineering , systems engineering
Spoken language understanding is an important part of the human-machine dialogue system, intent detection is a sub-task of spoken language understanding, and it is very important. The accuracy of intent detection is directly related to the performance of semantic slot filling, and it is helpful to the following research of the dialogue system. Considering the difficulty of intent detection in human-machine dialogue system, the traditional machine learning method cannot understand the deep semantic information of user’s discourse. This paper mainly analyzes, compares and summarizes the deep learning methods applied in the research of intent detection in recent years, and further considers how to apply deep learning model to multi-intent detection task, so as to promote the research of multi-intent detection methods based on deep neural network.