
Prediction of maximum amplitude of solar cycle 25 using machine learning
Author(s) -
Tiar Dani,
Santi Sulistiani
Publication year - 2019
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1231/1/012022
Subject(s) - sunspot , solar cycle 24 , support vector machine , amplitude , solar cycle , sunspot number , mathematics , linear regression , meteorology , algorithm , environmental science , artificial intelligence , physics , computer science , statistics , solar wind , optics , quantum mechanics , magnetic field