
How to take fractional-order derivative experimentally?
Author(s) -
Daniil D. Stupin,
Alexey Lihachev,
А. В. Нащекин
Publication year - 2018
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1124/7/071011
Subject(s) - differentiator , fractional calculus , order (exchange) , dispersion (optics) , capacitance , derivative (finance) , interface (matter) , tin , nanoporous , electrode , simple (philosophy) , mathematics , materials science , computer science , mathematical analysis , calculus (dental) , physics , telecommunications , nanotechnology , quantum mechanics , bandwidth (computing) , dentistry , financial economics , medicine , finance , economics , philosophy , gibbs isotherm , surface tension , epistemology , metallurgy
In this study we demonstrate a simple and compact implementation of the fractional-order differentiator. At the heart of the proposed approach lies the “universal power law” of the capacitance dispersion of the interface between nanoporous TiN micro-electrode and NaCl 0.9% solution. Using of this phenomenon we take experimentally 0.68- and 0.77-order derivatives of various functions.