
Hybrid ARIMAX quantile regression method for forecasting short term electricity consumption in east java
Author(s) -
Mike Prastuti,
Suhartono Suhartono,
Novi Ajeng Salehah
Publication year - 2018
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1008/1/012023
Subject(s) - electricity , quantile regression , econometrics , heteroscedasticity , regression analysis , mains electricity , consumption (sociology) , term (time) , statistics , sample (material) , computer science , quantile , linear regression , mean absolute percentage error , mean squared error , economics , mathematics , engineering , social science , physics , chemistry , chromatography , quantum mechanics , voltage , sociology , electrical engineering