Open Access
Time-resolved estimation of strength of motor imagery representation by multivariate EEG decoding
Author(s) -
Jonatan Tidare,
Miguel León,
Elaine Åstrand
Publication year - 2021
Publication title -
journal of neural engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.594
H-Index - 111
eISSN - 1741-2560
pISSN - 1741-2552
DOI - 10.1088/1741-2552/abd007
Subject(s) - decoding methods , electroencephalography , computer science , artificial intelligence , support vector machine , multivariate statistics , pattern recognition (psychology) , motor imagery , brain–computer interface , univariate , speech recognition , machine learning , psychology , neuroscience , telecommunications
Objective . Multivariate decoding enables access to information encoded in multiple brain activity features with high temporal resolution. However, whether the strength, of which this information is represented in the brain, can be extracted across time within single trials remains largely unexplored. Approach. In this study, we addressed this question by applying a support vector machine (SVM) to extract motor imagery (MI) representations, from electroencephalogram (EEG) data, and by performing time-resolved single-trial analyses of the multivariate decoding. EEG was recorded from a group of healthy participants during MI of opening and closing of the same hand. Main results. Cross-temporal decoding revealed both dynamic and stationary MI-relevant features during the task. Specifically, features representing MI evolved dynamically early in the trial and later stabilized into a stationary network of MI features. Using a hierarchical genetic algorithm for selection of MI-relevant features, we identified primarily contralateral alpha and beta frequency features over the sensorimotor and parieto-occipital cortices as stationary which extended into a bilateral pattern in the later part of the trial. During the stationary encoding of MI, by extracting the SVM prediction scores, we analyzed MI-relevant EEG activity patterns with respect to the temporal dynamics within single trials. We show that the SVM prediction score correlates to the amplitude of univariate MI-relevant features (as documented from an extensive repertoire of previous MI studies) within single trials, strongly suggesting that these are functional variations of MI strength hidden in trial averages. Significance. Our work demonstrates a powerful approach for estimating MI strength continually within single trials, having far-reaching impact for single-trial analyses. In terms of MI neurofeedback for motor rehabilitation, these results set the ground for more refined neurofeedback reflecting the strength of MI that can be provided to patients continually in time.