
An easy-to-assemble, robust, and lightweight drive implant for chronic tetrode recordings in freely moving animals
Author(s) -
Jakob Voigts,
Jonathan P. Newman,
Matthew A. Wilson,
Mark T. Harnett
Publication year - 2020
Publication title -
journal of neural engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.594
H-Index - 111
eISSN - 1741-2560
pISSN - 1741-2552
DOI - 10.1088/1741-2552/ab77f9
Subject(s) - brain implant , computer science , implant , amplifier , robustness (evolution) , biomedical engineering , artificial intelligence , telecommunications , medicine , biology , surgery , bandwidth (computing) , biochemistry , gene
Tetrode arrays are a standard method for neuronal recordings in behaving animals, especially for chronic recordings of many neurons in freely-moving animals. Objective. We sought to simplify tetrode drive designs with the aim of enabling building and implanting a 16-tetrode drive in a single day. Approach. Our design makes use of recently developed technologies to reduce the complexity of the drive while maintaining a low weight. Main results. The design presents an improvement over existing implants in terms of robustness, weight, and ease of use. We describe two variants: a 16 tetrode implant weighing ∼2 g for mice, bats, tree shrews and similar animals, and a 64 tetrode implant weighing ∼16 g for rats and similar animals. These designs were co-developed and optimized alongside a new class of drive-mounted feature-rich amplifier boards with ultra-thin radio-frequency tethers, as described in an upcoming paper (Newman, Zhang et al in prep). Significance. This design significantly improves the data yield of chronic electrophysiology experiments.