
Magnetoplasmon resonance in two-dimensional fluctuating superconductors
Author(s) -
K. Sonowal,
V. M. Kovalev,
I. G. Savenko
Publication year - 2021
Publication title -
new journal of physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.584
H-Index - 190
ISSN - 1367-2630
DOI - 10.1088/1367-2630/ac1ed5
Subject(s) - physics , cooper pair , condensed matter physics , superconductivity , coulomb , resonance (particle physics) , magnetic field , terahertz radiation , electron , field (mathematics) , quantum mechanics , mathematics , pure mathematics
We develop a theory of the magnetoplasmon resonance (MPR) in two-dimensional superconductors in the fluctuating regime, where the temperature is slightly above the critical temperature of the superconducting transition. In this regime, unpaired electrons and fluctuating Cooper pairs coexist in the system and interact with each other via long-range Coulomb forces, forming a Bose–Fermi mixture. The sample is considered to be under the influence of an external time-dependent electromagnetic field with a frequency in sub-terahertz range and a permanent magnetic field. It is shown that the MPR of the system is strongly modified in the presence of superconducting fluctuations in the vicinity of the superconducting transition. In particular, the fluctuating Cooper pairs dramatically change the broadening of the MPR, which is reflected in the optical response of the system.