z-logo
open-access-imgOpen Access
Spin-polarized electron transmission through B-doped graphene nanoribbons with Fe functionalization: a first-principles study
Author(s) -
Shigeru Tsukamoto,
Vasile Caciuc,
Nicolae Atodiresei,
Stefan Blügel
Publication year - 2020
Publication title -
new journal of physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.584
H-Index - 190
ISSN - 1367-2630
DOI - 10.1088/1367-2630/ab8cac
Subject(s) - graphene , doping , condensed matter physics , electron , physics , spintronics , graphene nanoribbons , spin polarization , optoelectronics , ferromagnetism , quantum mechanics
In this study, we investigate the electron transport properties of a B-doped armchair graphene nanoribbon (AGNR) suspended between graphene electrodes based on first-principles calculations. Our calculations reveal that one of the electron transmission channels of a pristine AGNR junction is closed by the B-doping. We then proceed to explore the effect of the B-doping on the spin-polarized electron transport behavior of a Fe-functionalized AGNR junction. As a result, transmission channels for majority-spin electrons are closed and the spin polarization of the electron transmission is enhanced from 0.60 for the Fe-functionalized AGNR junction to 0.96 for the B- and Fe-codoped one. This observation implies that the codoped AGNR junction can be employed as a spin filter. In addition, we investigate the electronic nature of the transmission suppression caused by the B-doping. A detailed analysis of the scattering wave functions clarifies that a mode modulation of an incident wave arises in the B-doped AGNR part and the incident wave connects to an evanescent wave in the transmission-side electrode. For pristine and Fe-functionalized AGNR junctions, such a mode modulation is not observed and the incident wave connects to a propagating wave in the transmission-side electrode. Tuning of electron transport property by exploiting such a mode modulation is one of promising techniques for designing functionality of spintronics devices. We also discuss the general correspondence between the electron transmission spectrum and the density of states of a junction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here