z-logo
open-access-imgOpen Access
Structural modal identification and health monitoring of building structures using self-sensing cementitious composites
Author(s) -
Siqi Ding,
You Wu Wang,
Yiqing Ni,
Baoguo Han
Publication year - 2020
Publication title -
smart materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.898
H-Index - 154
eISSN - 1361-665X
pISSN - 0964-1726
DOI - 10.1088/1361-665x/ab79b9
Subject(s) - structural health monitoring , materials science , modal , structural engineering , composite number , composite material , cementitious , cement , modal analysis , compressive strength , engineering , finite element method
Recently self-sensing cementitious composite has demonstrated its strong potentiality for structural health monitoring of civil infrastructures because of its low-cost, long-term stability and compatibility with concrete structures. In this paper, we propose novel hybrid nanocarbon materials engineered cement-based sensors (HNCSs) with high-sensitivity, which are fabricated with self-sensing cementitious composites containing electrostatic self-assembled CNT/NCB composite fillers. The mechanical property and sensing performance of the HNCSs are pre-characterized under static and dynamic compressive loadings. The HNCSs are then integrated into a five-story building model via custom-made clamps to verify the feasibility for dynamic response measurements. Results show that the developed sensors have satisfactory mechanical property and excellent pressure-sensitive reproducibility and stability. With clamps holding on the building model, the HNCSs perform satisfactorily under sinusoidal excitations in the frequency range from 2 to 40 Hz. In addition, the modal frequencies and their changes of the building model caused by ‘damage’ simulated through adding additional masses identified by the HNCSs are favorably consistent with the counterparts acquired by accelerometers and strain gauges, indicating that the developed HNCSs have great potential for structural modal identification and damage detection applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here