z-logo
open-access-imgOpen Access
Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications
Author(s) -
June Young Kim,
Igor Kaganovich,
HyoChang Lee
Publication year - 2022
Publication title -
plasma sources science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 108
eISSN - 1361-6595
pISSN - 0963-0252
DOI - 10.1088/1361-6595/ac4574
Subject(s) - ionization , nanomaterials , electric discharge in gases , nanotechnology , electron avalanche , plasma , breakdown voltage , materials science , optoelectronics , chemistry , physics , voltage , engineering , electrical engineering , ion , nuclear physics , organic chemistry
Ionization gas sensors are ubiquitous tools that can monitor desired gases or detect abnormalities in real time to protect the environment of living organisms or to maintain clean and/or safe environment in industries. The sensors’ working principle is based on the fingerprinting of the breakdown voltage of one or more target gases using nanostructured materials. Fundamentally, nanomaterial-based ionization-gas sensors operate within a large framework of gas breakdown physics; signifying that an overall understanding of the gas breakdown mechanism is a crucial factor in the technological development of ionization gas sensors. Moreover, many studies have revealed that physical properties of nanomaterials play decisive roles in the gas breakdown physics and the performance of plasma-based gas sensors. Based on this insight, this review provides a comprehensive description of the foundation of both the gas breakdown physics and the nanomaterial-based ionization-gas-sensor technology, as well as introduces research trends on nanomaterial-based ionization gas sensors. The gas breakdown is reviewed, including the classical Townsend discharge theory and modified Paschen curves; and nanomaterial-based-electrodes proposed to improve the performance of ionization gas sensors are introduced. The secondary electron emission at the electrode surface is the key plasma–surface process that affects the performance of ionization gas sensors. Finally, we present our perspectives on possible future directions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here