z-logo
open-access-imgOpen Access
Optimizing constrained reconstruction in magnetic resonance imaging for signal detection
Author(s) -
Angel R. Pineda,
Hope Miedema,
Sajan Goud Lingala,
Krishna S. Nayak
Publication year - 2021
Publication title -
physics in medicine and biology/physics in medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.312
H-Index - 191
eISSN - 1361-6560
pISSN - 0031-9155
DOI - 10.1088/1361-6560/ac1021
Subject(s) - undersampling , regularization (linguistics) , mean squared error , wavelet , iterative reconstruction , computer science , total variation denoising , artificial intelligence , mathematics , algorithm , compressed sensing , pattern recognition (psychology) , statistics , image (mathematics)
Constrained reconstruction in magnetic resonance imaging (MRI) allows the use of prior information through constraints to improve reconstructed images. These constraints often take the form of regularization terms in the objective function used for reconstruction. Constrained reconstruction leads to images which appear to have fewer artifacts than reconstructions without constraints but because the methods are typically nonlinear, the reconstructed images have artifacts whose structure is hard to predict. In this work, we compared different methods of optimizing the regularization parameter using a total variation (TV) constraint in the spatial domain and sparsity in the wavelet domain for one-dimensional (2.56×) undersampling using variable density undersampling. We compared the mean squared error (MSE), structural similarity (SSIM), L-curve and the area under the receiver operating characteristic (AUC) using a linear discriminant for detecting a small and a large signal. We used a signal-known-exactly task with varying backgrounds in a simulation where the anatomical variation was the major source of clutter for the detection task. Our results show that the AUC dependence on regularization parameters varies with the imaging task (i.e. the signal being detected). The choice of regularization parameters for MSE, SSIM, L-curve and AUC were similar. We also found that a model-based reconstruction including TV and wavelet sparsity did slightly better in terms of AUC than just enforcing data consistency but using these constraints resulted in much better MSE and SSIM. These results suggest that the increased performance in MSE and SSIM over-estimate the improvement in detection performance for the tasks in this paper. The MSE and SSIM metrics show a big difference in performance where the difference in AUC is small. To our knowledge, this is the first time that signal detection with varying backgrounds has been used to optimize constrained reconstruction in MRI.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here