z-logo
open-access-imgOpen Access
Performance evaluation of a staggered three-layer DOI PET detector using a 1 mm LYSO pitch with PETsys TOFPET2 ASIC: comparison of HAMAMATSU and KETEK SiPMs
Author(s) -
Tim Binder,
Han Gyu Kang,
Munetaka Nitta,
Florian Schneider,
Taiga Yamaya,
Katia Parodi,
F. Wiest,
P. G. Thirolf
Publication year - 2021
Publication title -
physics in medicine and biology/physics in medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.312
H-Index - 191
eISSN - 1361-6560
pISSN - 0031-9155
DOI - 10.1088/1361-6560/abfbf3
Subject(s) - lyso , silicon photomultiplier , detector , optics , apds , scintillation , physics , materials science , optoelectronics , scintillator , avalanche photodiode
In this study, we propose a staggered three-layer depth-of-interaction (DOI) detector with a 1 mm crystal pitch and 19.8 mm total crystal thickness for a high-resolution and high-sensitivity small animal in-beam PET scanner. A three-layered stacked LYSO scintillation array (0.9 × 0.9 × 6.6 mm 3 crystals, 23 × 22 mm 2 surface area) read out by a SiPM array (8 × 8 channels, 3 × 3 mm 2 active area/channel and 50 μ m microcell size) with data acquisition, signal processing and digitization performed using the PETsys Electronics Evaluations kit (based on the TOFPET v2c ASIC) builds a DOI LYSO detector block. The performance of the DOI detector was evaluated in terms of crystal resolvability, energy resolution, and coincidence resolving time (CRT). A comparative performance evaluation of the staggered three-layer LYSO block was conducted with two different SiPM arrays from KETEK and HAMAMATSU. 100% (KETEK) and 99.8% (HAMAMATSU) of the crystals were identified, by using a flood irradiation the front- and back-side. The average energy resolutions for the 1st, 2nd, and 3rd layers were 16.5 (±2.3)%, 20.9(±4.0)%, and 32.7 (±21.0)% (KETEK) and 19.3 (±3.5)%, 21.2 (±4.1)%, and 26.6 (±10.3)% (HAMAMATSU) for the used SiPM arrays. The measured CRTs (FWHM) for the 1st, 2nd, and 3rd layers were 532 (±111) ps, 463 (±108) ps, and 447 (±111) ps (KETEK) and 402 (±46) ps, 392 (±54) ps, and 408 (±196) ps (HAMAMATSU). In conclusion, the performance of the staggered three-layer DOI detector with 1 mm LYSO pitch and 19.8 mm total crystal thickness was fully characterized. The feasibility of a highly performing readout of a high resolution DOI PET detector via SiPM arrays from KETEK and HAMAMATSU employing the PETsys TOFPET v2c ASIC could be demonstrated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here