z-logo
open-access-imgOpen Access
Magnetic resonance shear wave elastography using transient acoustic radiation force excitations and sinusoidal displacement encoding
Author(s) -
Lorne W. Hofstetter,
Henrik Odéen,
Bradley D. Bolster,
Douglas A. Christensen,
Allison Payne,
Dennis L. Parker
Publication year - 2021
Publication title -
physics in medicine and biology/physics in medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.312
H-Index - 191
eISSN - 1361-6560
pISSN - 0031-9155
DOI - 10.1088/1361-6560/abd5ce
Subject(s) - imaging phantom , elastography , acoustic radiation force , acoustics , magnetic resonance elastography , shear (geology) , physics , transducer , displacement (psychology) , optics , ultrasound , materials science , psychology , composite material , psychotherapist
A magnetic resonance (MR) shear wave elastography technique that uses transient acoustic radiation force impulses from a focused ultrasound (FUS) transducer and a sinusoidal-shaped MR displacement encoding strategy is presented. Using this encoding strategy, an analytic expression for calculating the shear wave speed in a heterogeneous medium was derived. Green's function-based simulations were used to evaluate the feasibility of calculating shear wave speed maps using the analytic expression. Accuracy of simulation technique was confirmed experimentally in a homogeneous gelatin phantom. The elastography measurement was compared to harmonic MR elastography in a homogeneous phantom experiment and the measured shear wave speed values differed by less than 14%. This new transient elastography approach was able to map the position and shape of inclusions sized from 8.5 to 14 mm in an inclusion phantom experiment. These preliminary results demonstrate the feasibility of using a straightforward analytic expression to generate shear wave speed maps from MR images where sinusoidal-shaped motion encoding gradients are used to encode the displacement-time history of a transiently propagating wave-packet. This new measurement technique may be particularly well suited for performing elastography before, during, and after MR-guided FUS therapies since the same device used for therapy is also used as an excitation source for elastography.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here