
Novel adaptive beam-dependent margins for additional OAR sparing
Author(s) -
Henry Tsang,
C P Kamerling,
Peter Ziegenhein,
Simeon Nill,
Uwe Oelfke
Publication year - 2018
Publication title -
physics in medicine and biology/physics in medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.312
H-Index - 191
eISSN - 1361-6560
pISSN - 0031-9155
DOI - 10.1088/1361-6560/aae658
Subject(s) - margin (machine learning) , nuclear medicine , radiation therapy , population , medicine , rectum , dose rate , beam (structure) , dosimetry , radiation treatment planning , medical physics , computer science , physics , radiology , optics , surgery , environmental health , machine learning
Margins are employed in radiotherapy treatment planning to mitigate the dosimetric effects of geometric uncertainties for the clinical target volume (CTV). Unfortunately, whilst the use of margins can increase the probability that sufficient dose is delivered to the CTV, it can also result in delivering high dose of radiation to surrounding organs at risk (OARs). We expand on our previous work on beam-dependent margins and propose a novel adaptive margin concept, where margins are moulded away from selected OARs for better OAR-high-dose sparing, whilst maintaining similar dose coverage probability to the CTV. This, however, comes at a cost of a larger irradiation volume, and thus can negatively impact other structures. We investigate the impact of the adaptive margin concept when applied to prostate radiotherapy treatments, and compare treatment plans generated using our beam-dependent margins without adaptation, with adaption from the rectum and with adaptation from both the rectum and bladder. Five prostate patients were used in this planning study. All plans achieved similar dose coverage probability, and were able to ensure at least 90% population coverage with the target receiving at least 95% of the prescribed dose to. We observed overall better high-dose sparing to OARs that were considered when using the adapted beam-dependent PTVs, with the degree of sparing dependent on both the number of OARs under consideration as well as the relative position between the CTV and the OARs.