
Pyroelectric ultrasound sensor model: directional response
Author(s) -
Santeri Kaupinmäki,
Ben Cox,
Simon Arridge,
Christian Baker,
David Sinden,
Bajram Zeqiri
Publication year - 2020
Publication title -
measurement science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.48
H-Index - 136
eISSN - 1361-6501
pISSN - 0957-0233
DOI - 10.1088/1361-6501/abc866
Subject(s) - acoustics , pyroelectricity , materials science , detector , attenuation , phase (matter) , optics , physics , optoelectronics , ferroelectricity , dielectric , quantum mechanics
Ultrasound is typically measured using phase-sensitive piezoelectric sensors. Interest in phase-insensitive sensors has grown recently, with proposed applications including ultrasound attenuation tomography of the breast and acoustic power measurement. One advantage of phase-insensitive detectors, in contrast to conventional phase-sensitive detectors, is that they do not suffer from a narrow directional response at high frequencies due to phase cancellation. A numerical model of a phase-insensitive pyroelectric ultrasound sensor is presented. The model consists of three coupled components run in sequence: acoustic, thermal, and electrical. The acoustic simulation models the propagation and absorption of the incident ultrasound wave. The absorbed acoustic power density is used as a heat source in the thermal simulation of the time-evolution of the temperature in the sensor. Both the acoustic and thermal simulations are performed using the k-Wave MATLAB toolbox with an assumption that shear waves are not supported in the medium. The final component of the model is a pyroelectric circuit model which outputs the sensor response based on the temperature change in the sensor. The modelled pyroelectric sensor response and directional dependence are compared to empirical data.