z-logo
open-access-imgOpen Access
Niche Specificity, Polygeny, and Pleiotropy in Herbivorous Insects
Author(s) -
Nate B. Hardy,
Matthew L. Forister
Publication year - 2022
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/722568
Subject(s) - pleiotropy , sympatric speciation , biology , evolutionary biology , host (biology) , niche , herbivore , ecology , population , genetics , phenotype , gene , demography , sociology
AbstractWhat causes host use specificity in herbivorous insects? Population genetic models predict specialization when habitat preference can evolve and there is antagonistic pleiotropy at a performance-affecting locus. But empirically for herbivorous insects, host use performance is governed by many genetic loci, and antagonistic pleiotropy seems to be rare. Here, we use individual-based quantitative genetic simulation models to investigate the role of pleiotropy in the evolution of sympatric host use specialization when performance and preference are quantitative traits. We look first at pleiotropies affecting only host use performance. We find that when the host environment changes slowly, the evolution of host use specialization requires levels of antagonistic pleiotropy much higher than what has been observed in nature. On the other hand, with rapid environmental change or pronounced asymmetries in productivity across host species, the evolution of host use specialization readily occurs without pleiotropy. When pleiotropies affect preference as well as performance, even with slow environmental change and host species of equal productivity, we observe fluctuations in host use breadth, with mean specificity increasing with the pervasiveness of antagonistic pleiotropy. Thus, our simulations show that pleiotropy is not necessary for specialization, although it can be sufficient, provided it is extensive or multifarious.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom