Effects of Community Richness and Competitive Asymmetry on Protozoa Evolution in Sarracenia purpurea Leaves
Author(s) -
Thomas E. Miller,
Abigail I. Pastore,
Catalina CuellarGempeler,
Erin J. Canter,
Olivia U. Mason
Publication year - 2022
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/721010
Subject(s) - biology , guild , species richness , ecology , competition (biology) , selection (genetic algorithm) , coexistence theory , species diversity , habitat , artificial intelligence , computer science
AbstractPredicting evolution in natural systems will require understanding how selection operates in multispecies communities. We predicted that the amount that traits evolve in multispecies mixtures would be less than the amount that would be predicted from the additive contributions of the pairwise interactions and that subordinate species will be more likely to evolve in competitive systems than dominant species. We conducted an experimental test of these predictions using a guild of protozoans found in the water-filled leaves of the pitcher plan Sarracenia purpurea . The response to selection did not significantly change as we increased richness from monocultures to two- and four-species mixtures. In accordance with our second prediction, subordinate species demonstrated greater growth in competition after selection than before, while dominant species generally showed no response to selection. Monod-type experiments to determine minimum resource levels found that the dominant species had much higher resource requirements than the subordinate species and that the minimum resource requirements evolved to be higher in the subordinate species. Importantly, these results suggest that subordinate species evolve to become more similar to dominant species, which may involve resource use convergence. Our findings and other recent works suggest that community diversity can affect evolution in surprising ways that warrant further investigation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom