z-logo
open-access-imgOpen Access
Temporal Variation in Predation Risk May Explain Daily Rhythms of Foraging Behavior in an Orb-Weaving Spider
Author(s) -
J. Colton Watts,
Thomas C. Jones,
Ashley Herrig,
Madeleine K. Miller,
Brigitte Tenhumberg
Publication year - 2017
Publication title -
the american naturalist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 205
eISSN - 1537-5323
pISSN - 0003-0147
DOI - 10.1086/694775
Subject(s) - foraging , predation , spider , ecology , biology , trait , orb (optics) , boldness , psychology , computer science , personality , artificial intelligence , social psychology , image (mathematics) , programming language
Daily rhythms occur in numerous physiological and behavioral processes across an immense diversity of taxa, but there remain few cases in which mechanistic links between rhythms of trait expression and organismal fitness have been established. We construct a dynamic optimization model to determine whether risk allocation provides an adaptive explanation for the daily foraging rhythm observed in many species using the orb-weaving spider Cyclosa turbinata as a case study. Our model predicts that female C. turbinata should generally start foraging at lower levels of energy reserves (i.e., should be less bold) during midday when predators are most abundant. We also find that individuals' foraging efficacy determines whether daily rates of encounters with predators or prey more strongly influences boldness under high risk. The qualitative model predictions are robust to variation in our parameter estimates and likely apply to a wide range of taxa. The predictions are also consistent with observed patterns of foraging behavior under both laboratory and field conditions. We discuss the implications of our study for understanding the evolution of daily rhythms and the importance of model predictions for interpreting empirical studies and generating additional hypotheses regarding behavioral evolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom