Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice
Author(s) -
Jing Qu,
Shanzhong Yang,
Yi Zhu,
Ting Guo,
Victor J. Thannickal,
Yong Zhou
Publication year - 2021
Publication title -
the journal of experimental medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.483
H-Index - 448
eISSN - 1540-9538
pISSN - 0022-1007
DOI - 10.1084/jem.20202033
Subject(s) - myofibroblast , mechanosensitive channels , idiopathic pulmonary fibrosis , lung , pulmonary fibrosis , fibrosis , cancer research , medicine , pathology , apoptosis , biology , receptor , biochemistry , ion channel
Aging is a strong risk factor and an independent prognostic factor for progressive human idiopathic pulmonary fibrosis (IPF). Aged mice develop nonresolving pulmonary fibrosis following lung injury. In this study, we found that mouse double minute 4 homolog (MDM4) is highly expressed in the fibrotic lesions of human IPF and experimental pulmonary fibrosis in aged mice. We identified MDM4 as a matrix stiffness-regulated endogenous inhibitor of p53. Reducing matrix stiffness down-regulates MDM4 expression, resulting in p53 activation in primary lung myofibroblasts isolated from IPF patients. Gain of p53 function activates a gene program that sensitizes lung myofibroblasts to apoptosis and promotes the clearance of apoptotic myofibroblasts by macrophages. Destiffening of the fibrotic lung matrix by targeting nonenzymatic cross-linking or genetic ablation of Mdm4 in lung (myo)fibroblasts activates the Mdm4-p53 pathway and promotes lung fibrosis resolution in aged mice. These findings suggest that mechanosensitive MDM4 is a molecular target with promising therapeutic potential against persistent lung fibrosis associated with aging.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom