Open Access
Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver
Author(s) -
Yeojin Lee,
Juliana Leslie,
Ying Yang,
Lei Ding
Publication year - 2020
Publication title -
the journal of experimental medicine/the journal of experimental medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.483
H-Index - 448
eISSN - 1540-9538
pISSN - 0022-1007
DOI - 10.1084/jem.20200882
Subject(s) - hepatic stellate cell , biology , haematopoiesis , liver cytology , stem cell , stem cell factor , microbiology and biotechnology , endothelial stem cell , perisinusoidal space , hepatocyte , in vitro , endocrinology , biochemistry , liver metabolism
The liver maintains hematopoietic stem cells (HSCs) during development. However, it is not clear what cells are the components of the developing liver niche in vivo. Here, we genetically dissected the developing liver niche by systematically determining the cellular source of a key HSC niche factor, stem cell factor (SCF). Most HSCs were closely associated with sinusoidal vasculature. Using Scfgfp knockin mice, we found that Scf was primarily expressed by endothelial and perisinusoidal hepatic stellate cells. Conditional deletion of Scf from hepatocytes, hematopoietic cells, Ng2+ cells, or endothelial cells did not affect HSC number or function. Deletion of Scf from hepatic stellate cells depleted HSCs. Nearly all HSCs were lost when Scf was deleted from both endothelial and hepatic stellate cells. The expression of several niche factors was down-regulated in stellate cells around birth, when HSCs egress the developing liver. Thus, hepatic stellate and endothelial cells create perisinusoidal vascular HSC niche in the developing liver by producing SCF.