z-logo
open-access-imgOpen Access
A loop extrusion–independent mechanism contributes to condensin I–mediated chromosome shaping
Author(s) -
Kazuhisa Kinoshita,
Yuko Tsubota,
Shoji Tane,
Yuuki Aizawa,
Ryota Sakata,
K. Takeuchi,
Keishi Shintomi,
Tomoko Nishiyama,
Tatsuya Hirano
Publication year - 2022
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.202109016
Subject(s) - condensin , mechanism (biology) , extrusion , chromosome , loop (graph theory) , genetics , materials science , biology , chromosome segregation , physics , mathematics , composite material , gene , combinatorics , quantum mechanics
Condensin I is a five-subunit protein complex that is central to mitotic chromosome assembly in eukaryotic cells. Despite recent progress, its molecular mechanisms of action remain to be fully elucidated. By using Xenopus egg extracts as a functional assay, we find that condensin I complexes harboring mutations in its kleisin subunit CAP-H produce chromosomes with confined axes in the presence of topoisomerase IIα (topo IIα) and highly compact structures (termed “beans”) with condensin-positive central cores in its absence. The bean phenotype depends on the SMC ATPase cycle and can be reversed by subsequent addition of topo IIα. The HEAT repeat subunit CAP-D2, but not CAP-G, is essential for the bean formation. Notably, loop extrusion activities of the mutant complexes cannot explain the chromosomal defects they exhibit in Xenopus egg extracts, implying that a loop extrusion–independent mechanism contributes to condensin I–mediated chromosome assembly and shaping. We provide evidence that condensin–condensin interactions underlie these processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom