z-logo
open-access-imgOpen Access
Microtubules control cellular shape and coherence in amoeboid migrating cells
Author(s) -
Aglaja Kopf,
Jörg Renkawitz,
Robert Hauschild,
Irutė Girkontaitė,
Kerry Tedford,
Jack Merrin,
Oliver ThornSeshold,
Dirk Trauner,
Hans Häcker,
Klaus-Dieter Fischer,
Eva Kiermaier,
Michael Sixt
Publication year - 2020
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.201907154
Subject(s) - microtubule , microbiology and biotechnology , motility , cell migration , biology , cell , genetics
Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom