HRS–WASH axis governs actin-mediated endosomal recycling and cell invasion
Author(s) -
Ewan MacDonald,
Louise Brown,
Arnaud Selvais,
Han Liu,
Thomas Waring,
Daniel Newman,
Jessica Bithell,
Douglas Grimes,
Sylvie Urbé,
Michael J. Clague,
Tobias Zech
Publication year - 2018
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.201710051
Subject(s) - endosome , escrt , microbiology and biotechnology , transmembrane protein , invadopodia , vacuolar protein sorting , epidermal growth factor receptor , hepatocyte growth factor , tsg101 , biology , chemistry , cancer cell , receptor , biochemistry , microvesicles , intracellular , cancer , gene , microrna , genetics
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains. Depletion of HRS results in defective constitutive recycling of epidermal growth factor receptor and the matrix metalloproteinase MT1-MMP, leading to their accumulation in internal compartments. We show that direct interactions with endosomal actin are required for efficient recycling and use a model system of chimeric transferrin receptor trafficking to show that an actin-binding motif can counteract an ubiquitin signal for lysosomal sorting. Directed receptor recycling is used by cancer cells to achieve invasive migration. Accordingly, abrogating HRS- and actin-dependent MT1-MMP recycling results in defective matrix degradation and invasion of triple-negative breast cancer cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom