z-logo
open-access-imgOpen Access
Calreticulin inhibits commitment to adipocyte differentiation
Author(s) -
Éva Szabó,
Yuanyuan Qiu,
Shairaz Baksh,
Marek Michalak,
Michał Opas
Publication year - 2008
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.200712078
Subject(s) - calreticulin , adipogenesis , biology , microbiology and biotechnology , endoplasmic reticulum , calcium binding protein , adipocyte , medicine , endocrinology , adipose tissue , calcium , mesenchymal stem cell
Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressing cells. In the highly adipogenic crt−/− cells, the ER lumenal calcium concentration was reduced. Increasing the ER lumenal calcium concentration led to a decrease in adipogenesis. In calreticulin-deficient cells, the calmodulin–Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway was up-regulated, and inhibition of CaMKII reduced adipogenesis. Calreticulin inhibits adipogenesis via a negative feedback mechanism whereby the expression of calreticulin is initially up-regulated by peroxisome proliferator–activated receptor γ (PPARγ). This abundance of calreticulin subsequently negatively regulates the expression of PPARγ, lipoprotein lipase, CCAAT enhancer–binding protein α, and aP2. Thus, calreticulin appears to function as a Ca2+-dependent molecular switch that regulates commitment to adipocyte differentiation by preventing the expression and transcriptional activation of critical proadipogenic transcription factors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom