
Analysis of physical human–robot interaction for motor learning with physical help
Author(s) -
Shuhei Ikemoto,
Takashi Minato,
Hiroshi Ishiguro
Publication year - 2009
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1080/11762320902808143
Subject(s) - human–computer interaction , robot , computer science , human–robot interaction , motor learning , simulation , artificial intelligence , engineering , psychology , neuroscience
In this paper, we investigate physical human–robot interaction (PHRI) as an important extension of traditional HRI research. The aim of this research is to develop a motor learning system that uses physical help from a human helper. We first propose a new control system that takes advantage of inherent joint flexibility. This control system is applied on a new humanoid robot called CB2. In order to clarify the difference between successful and unsuccessful interaction, we conduct an experiment where a human subject has to help the CB2 robot in its rising-up motion. We then develop a new measure that demonstrates the difference between smooth and non-smooth physical interactions. An analysis of the experiment’s data, based on the introduced measure, shows significant differences between experts and beginners in human–robot interaction