z-logo
open-access-imgOpen Access
The Malthusian parameter of ascents: What prevents the exponential increase of one’s ancestors?
Author(s) -
Susumu Ohno
Publication year - 1996
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.93.26.15276
Subject(s) - population , exponential growth , exponential function , biology , evolutionary biology , mathematics , demography , sociology , mathematical analysis
The reason that the indefinite exponential increase in the number of one’s ancestors does not take place is found in the law of sibling interference, which can be expressed by the following simple equation:\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}\begin{matrix}{\mathit{N}}_{{\mathit{n}}} \enskip & \\ {\mathit{{\blacksquare}}} \enskip & \\ {\mathit{ASZ}} \enskip & \end{matrix} {\mathrm{\hspace{.167em}{\times}\hspace{.167em}2\hspace{.167em}=\hspace{.167em}}}{\mathit{N_{n+1},}}\end{equation*}\end{document} whereN n is the number of ancestors in then th generation,ASZ is the average sibling size of these ancestors, andN n +1 is the number of ancestors in the next older generation (n + 1). Accordingly, the exponential increase in the number of one’s ancestors is an initial anomaly that occurs whileASZ remains at 1. OnceASZ begins to exceed 1, the rate of increase in the number of ancestors is progressively curtailed, falling further and further behind the exponential increase rate. Eventually,ASZ reaches 2, and at that point, the number of ancestors stops increasing for two generations. These two generations, named AN SA and AN SA + 1, are the most critical in the ancestry, for one’s ancestors at that point come to represent all the progeny-produced adults of the entire ancestral population. Thereafter, the fate of one’s ancestors becomes the fate of the entire population. If the population to which one belongs is a successful, slowly expanding one, the number of ancestors would slowly decline as you move toward the remote past. This is becauseABZ would exceed 2. Only whenABZ is less than 2 would the number of ancestors increase beyond the AN SA and AN SA + 1 generations. Since the above is an indication of a failing population on the way to extinction, there had to be the previous AN SA involving a far greater number of individuals for such a population. Simulations indicated that for a member of a continuously successful population, the AN SA ancestors might have numbered as many as 5.2 million, the AN SA generation being the 28th generation in the past. However, because of the law of increasingly irrelevant remote ancestors, only a very small fraction of the AN SA ancestors would have left genetic traces in the genome of each descendant of today.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here