
Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen.
Author(s) -
Didier Rognan,
Léonardo Scapozza,
Gerd Folkers,
Angelika Daser
Publication year - 1995
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.92.3.753
Subject(s) - major histocompatibility complex , peptide , ligand (biochemistry) , human leukocyte antigen , mhc class i , rational design , chemistry , hla b , t cell receptor , antigen , biology , biochemistry , receptor , t cell , immune system , immunology , genetics
From the three-dimensional structure of the class I major histocompatibility complex (MHC) HLA-B*2705 protein, several nonnatural peptides were designed either to optimize the interactions of one peptide amino acid (position 3) with its HLA binding pocket (pocket D) or to simplify the T-cell receptor-binding part by substitution with organic spacers. The stability of each MHC-ligand complex was simulated by 150-ps molecular dynamics in a water environment and compared with that of the natural complexes. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro assembly assay. As predicted from the computed atomic fluctuations and buried surface areas of MHC-bound ligands, bulky hydrophobic side chains at position 3 enhance the binding of a nonameric peptide to the HLA-B27 protein. Furthermore, it was possible to simplify half of the peptide sequence (residues 4-8) by replacement with organic fragments without altering the affinity of the designed ligands for the class I MHC protein. This study constitutes an initial step toward the rational design of nonpeptide class I MHC ligands for use in the selective immunotherapy of autoimmune diseases associated with particular HLA alleles.