
Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes.
Author(s) -
Debra A. Peattie,
Matthew W. Harding,
Mark Fleming,
Maureen T. DeCenzo,
Judith A. Lippke,
David J. Livingston,
Matt Benasutti
Publication year - 1992
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.89.22.10974
Subject(s) - fkbp , biology , heat shock protein , complementary dna , microbiology and biotechnology , biochemistry , gene
Using an FK506 affinity column to identify mammalian immunosuppressant-binding proteins, we identified an immunophilin with an apparent M(r) approximately 55,000, which we have named FKBP52. We used chemically determined peptide sequence and a computerized algorithm to search GenPept, the translated GenBank data base, and identified two cDNAs likely to encode the murine FKBP52 homolog. We amplified a murine cDNA fragment, used it to select a human FKBP52 (hFKBP52) cDNA clone, and then used the clone to deduce the hFKBP52 sequence (calculated M(r) 51,810) and to express hFKBP52 in Escherichia coli. Recombinant hFKBP52 has peptidyl-prolyl cis-trans isomerase activity that is inhibited by FK506 and rapamycin and an FKBP12-like consensus sequence that probably defines the immunosuppressant-binding site. FKBP52 is apparently common to several vertebrate species and associates with the 90-kDa heat shock protein (hsp90) in untransformed mammalian steroid receptor complexes. The putative immunosuppressant-binding site is probably distinct from the hsp90-binding site, and we predict that FKBP52 has different structural domains to accommodate these functions. hFKBP52 contains 12 protein kinase phosphorylation-site motifs and a potential calmodulin-binding site, implying that posttranslational phosphorylation could generate multiple isoforms of the protein and that calmodulin and intracellular Ca2+ levels could affect FKBP52 function. FKBP52 transcripts are present in a variety of human tissues and could vary in abundance and/or stability.