z-logo
open-access-imgOpen Access
mRNAs for plasma membrane calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon.
Author(s) -
Emanuel E. Strehler,
M A Strehler-Page,
Gisela Vogel,
Ernesto Carafoli
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.18.6908
Subject(s) - exon , alternative splicing , biology , gene isoform , microbiology and biotechnology , complementary dna , peptide sequence , biochemistry , rna splicing , coding region , rna , gene
cDNA clones coding for human plasma membrane Ca2+ pump isoforms have been isolated from a fetal skeletal muscle cDNA library. Compared with the sequence of a teratoma cDNA-encoded pump these clones specify isoforms that contain either 29- or 38-amino acid insertions within the calmodulin-binding region. Replacement of two basic arginine residues by an aspartic acid and a glutamine residue could influence the binding of calmodulin to these isoforms. RNase mapping shows that RNA species containing the 29-residue-encoding insertion are particularly abundant in skeletal muscles. The sequences coding for the insertions are present on a single 154-base-pair exon, as demonstrated by an analysis of the corresponding genomic region, and they are included in their respective mRNAs by alternative splicing involving the differential usage of two internal "cryptic" donor splice sites in the presence of a nearby canonical one. Inclusion of the complete 154-base-pair exon results in an mRNA coding for a pump protein with a shorter C-terminal amino acid sequence that lacks a consensus site for phosphorylation by the cAMP-dependent kinase. Exclusion, inclusion, or partial inclusion of the same exon can thus lead to the production of four different mRNAs from a single gene. When expressed as protein, these mRNAs encode Ca2+ pump isoforms that differ in their C-terminal regulatory domains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here