Open Access
Translational stability of native and deadenylylated rabbit globin mRNA injected into HeLa cells.
Author(s) -
Georges Huez,
Claudine Bruck,
Yvette Cleuter
Publication year - 1981
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.78.2.908
Subject(s) - globin , messenger rna , microbiology and biotechnology , hela , biology , xenopus , beta (programming language) , chemistry , cell , biochemistry , hemoglobin , gene , computer science , programming language
HeLa human cells were injected with a natural mixture of rabbit alpha and beta globin mRNA. They were incubated for 6 hr with [35S]methionine either immediately after injection or 20 hr later. The labeled proteins in the injected cells were analyzed by fluorography of two-dimensional electrophoresis gels. By using this procedure, it was possible to show that, during the first few hours after injection, both alpha and beta globin molecules are synthesized with an alpha to beta ratio approximately equal to 0.6. The rate of synthesis of alpha globin decreased significantly faster than that of beta globin over a 26-hr period after injection of the two mRNAs. It thus seems that two messenger RNAs coding for closely related polypeptides possess a markedly different translational stability. When deadenylylated rabbit globin mRNAs were injected into HeLa cells, no globin synthesis could be detected by the techniques used. We conclude that the translational half-life of mRNAs lacking poly(A) is very short in these cells. It is thus clear that the poly(A) segment is required to ensure stability to globin mRNA in somatic cells as in Xenopus oocytes.