z-logo
open-access-imgOpen Access
Evolution of a new enzymatic function by recombination within a gene.
Author(s) -
Barry G. Hall,
Timothy J. Zuzel
Publication year - 1980
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.77.6.3529
Subject(s) - mutant , genetics , biology , beta galactosidase , gene , escherichia coli , mutation , lactose , enzyme , recombination , biochemistry
Mutations that alter the ebgA gene so that the evolved beta-galactosidase (ebg) enzyme of Escherichia coli can hydrolyze lactose fall into two classes: class I mutants use only lactose, whereas class II mutants use lactulose as well as lactose. Neither class uses galactosylarabinose effectively. In this paper we show that when both a class I and a class II mutation are present in the same ebgA gene, ebg enzyme acquires a specificity for galactosylarabinose. Although galactosylarbinose utilization can evolve as the consequence of sequential spontaneous mutations, it can also evolve via intragenic recombination in crosses between class I and class II ebgA+ mutant strains. We show that the sites for class I and class II mutations lie about 1 kilobase, or about a third of the gene, apart in ebgA. Implications of these findings with respect to the evolution of new metabolic functions discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here