
Specific lysine labeling by 18OH- during alkaline cleavage of the alpha-1-antitrypsin-trypsin complex.
Author(s) -
Allen B. Cohen,
Larry D. Gruenke,
J. Cymerman Craig,
Dagmar Geczy
Publication year - 1977
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.74.10.4311
Subject(s) - trypsin , lysine , carboxypeptidase a , chemistry , carboxypeptidase , biochemistry , enzyme , cleavage (geology) , alpha (finance) , peptide , amino acid , covalent bond , stereochemistry , biology , organic chemistry , medicine , paleontology , construct validity , nursing , fracture (geology) , patient satisfaction
alpha-1-Antitrypsin is a serum protein that inhibits many proteolytic enzymes. Recently, it was suggested that the alpha-1-antitrypsin-trypsin complex is an acyl ester analogous to the acyl intermediate that forms between trypsin and its substrates. In previous work we showed that the alpha-1-antitrypsin-trypsin complex can be split at high pH, releasing a component of alpha-1-antitrypsin. This component had a new carboxyl-terminal lysine, and it had lost a peptide of about 4000 daltons. In order to determine whether the alpha-1-antitrypsin is bound to trypsin through the new carboxy-terminal lysine, as would be expected if the above hypothesis is correct, we split the complex in the presence of 18OH-. When the new carboxy-terminal lysine was cleaved with carboxypeptidase B, singly labeled, doubly labeled, and unlabeled lysine were recovered. These data support the hypothesis that the alpha-1-antitrypsin-trypsin complex is an acyl ester or a tetrahedral precursor that is transformed into the acyl ester form at high pH. If other enzymes are bound by a similar mechanism, the methods used may be useful in determining which amino acids on alpha-1-antitrypsin bind covalently to each enzyme.