
The oxygen initial dip in the brain of anesthetized and awake mice
Author(s) -
Ali-Kemal Aydin,
Camille Verdier,
Emmanuelle Chaigneau,
Serge Charpak
Publication year - 2022
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.2200205119
Subject(s) - chemistry , stimulation , olfactory bulb , neuropil , anatomy , neuroscience , anesthesia , central nervous system , biology , medicine
Significance Sensory stimulation generates a robust decrease in oxygen concentration (pO2 initial dip) in brain tissue of anesthetized cats and rodents. This dip reports local activation of neurons much better than the delayed pO2 increase associated with functional hyperemia. Here, we reinvestigated the issue in animals that recovered from acute surgery using two-photon lifetime microscopy. Targeting a distinct neuronal network that is the site of strong activation and energy consumption, we show that in anesthetized animals the pO2 initial dip is present but extremely small in juxtasynaptic capillaries. In awake animals, it is no longer detectable in vessels or in the neuropil. This demonstrates that in healthy animals, neurovascular coupling is too fast and efficient to reveal a pO2 initial dip.