
PIF7 controls leaf cell proliferation through an AN3 substitution repression mechanism
Author(s) -
Ejaz Hussain,
Andrés Romanowski,
Karen Halliday
Publication year - 2022
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.2115682119
Subject(s) - psychological repression , substitution (logic) , mechanism (biology) , cell growth , microbiology and biotechnology , chemistry , biology , biochemistry , computer science , gene expression , gene , physics , quantum mechanics , programming language
Significance Phytochrome photoreceptors can markedly alter leaf blade growth in response to far-red (FR) rich neighbor shade, yet we have a limited understanding of how this is accomplished. This study identifies ANGUSTIFOLIA3 (AN3) as a central component in phytochrome promotion of leaf cell proliferation and PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) as a potent repressor. AN3 and PIF7 impose opposing regulation on a shared suite of genes through commoncis -acting promoter elements. In response to FR light, activated PIF7 blocks AN3 action by evicting and substituting for AN3 at target promoters. This molecular switch module provides a mechanism through which changes in external light quality can dynamically manipulate gene expression, cell division, and leaf size.