
Dietary ω-3 polyunsaturated fatty acids are protective for myopia
Author(s) -
Miaozhen Pan,
Fei Zhao,
Bintao Xie,
Huizi Wu,
Sen Zhang,
Cong Ye,
Zhenqi Guan,
Lin Kang,
Yuqing Zhang,
Xuan Zhou,
Yi Lei,
Qi Wang,
Li Wang,
Fan Yang,
Chenchen Zhao,
Jia Qu,
Xiangtian Zhou
Publication year - 2021
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.2104689118
Subject(s) - polyunsaturated fatty acid , docosahexaenoic acid , eicosapentaenoic acid , medicine , guinea pig , endocrinology , physiology , biology , fatty acid , biochemistry
Myopia is a leading cause of visual impairment and blindness worldwide. However, a safe and accessible approach for myopia control and prevention is currently unavailable. Here, we investigated the therapeutic effect of dietary supplements of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on myopia progression in animal models and on decreases in choroidal blood perfusion (ChBP) caused by near work, a risk factor for myopia in young adults. We demonstrated that daily gavage of ω-3 PUFAs (300 mg docosahexaenoic acid [DHA] plus 60 mg eicosapentaenoic acid [EPA]) significantly attenuated the development of form deprivation myopia in guinea pigs and mice, as well as of lens-induced myopia in guinea pigs. Peribulbar injections of DHA also inhibited myopia progression in form-deprived guinea pigs. The suppression of myopia in guinea pigs was accompanied by inhibition of the "ChBP reduction-scleral hypoxia cascade." Additionally, treatment with DHA or EPA antagonized hypoxia-induced myofibroblast transdifferentiation in cultured human scleral fibroblasts. In human subjects, oral administration of ω-3 PUFAs partially alleviated the near-work-induced decreases in ChBP. Therefore, evidence from these animal and human studies suggests ω-3 PUFAs are potential and readily available candidates for myopia control.