z-logo
open-access-imgOpen Access
Contractile pericytes determine the direction of blood flow at capillary junctions
Author(s) -
Albert L. Gonzales,
Nicholas R. Klug,
Arash Moshkforoush,
Jane C. Lee,
Frank K. Lee,
Bo Shui,
Nikolaos M. Tsoukias,
Michael I. Kotlikoff,
David HillEubanks,
Mark T. Nelson
Publication year - 2020
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.1922755117
Subject(s) - pericyte , capillary action , contractility , blood flow , microbiology and biotechnology , retina , biology , neuroscience , anatomy , chemistry , biophysics , materials science , medicine , endothelial stem cell , endocrinology , biochemistry , in vitro , composite material
The essential function of the circulatory system is to continuously and efficiently supply the O 2 and nutrients necessary to meet the metabolic demands of every cell in the body, a function in which vast capillary networks play a key role. Capillary networks serve an additional important function in the central nervous system: acting as a sensory network, they detect neuronal activity in the form of elevated extracellular K + and initiate a retrograde, propagating, hyperpolarizing signal that dilates upstream arterioles to rapidly increase local blood flow. Yet, little is known about how blood entering this network is distributed on a branch-to-branch basis to reach specific neurons in need. Here, we demonstrate that capillary-enwrapping projections of junctional, contractile pericytes within a postarteriole transitional region differentially constrict to structurally and dynamically determine the morphology of capillary junctions and thereby regulate branch-specific blood flow. We further found that these contractile pericytes are capable of receiving propagating K + -induced hyperpolarizing signals propagating through the capillary network and dynamically channeling red blood cells toward the initiating signal. By controlling blood flow at junctions, contractile pericytes within a functionally distinct postarteriole transitional region maintain the efficiency and effectiveness of the capillary network, enabling optimal perfusion of the brain.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here