z-logo
open-access-imgOpen Access
Bovine gonadotrophs express anti-Müllerian hormone (AMH): comparison of AMH mRNA and protein expression levels between old Holsteins and young and old Japanese Black females
Author(s) -
Onalenna Kereilwe,
Hiroya Kadokawa
Publication year - 2018
Publication title -
reproduction fertility and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.609
H-Index - 76
eISSN - 1448-5990
pISSN - 1031-3613
DOI - 10.1071/rd18341
Subject(s) - anti müllerian hormone , gonadotropic cell , autocrine signalling , biology , medicine , endocrinology , paracrine signalling , messenger rna , hormone , andrology , luteinizing hormone , receptor , gene , genetics
Anti-Müllerian hormone (AMH) is secreted from ovaries and stimulates gonadotrophin secretion from bovine gonadotroph cells. Other important hormones for endocrinological gonadotroph regulation (e.g. gonadotrophin-releasing hormone, inhibin and activin) have paracrine and autocrine roles. Therefore, in this study, AMH expression in bovine gonadotroph cells and the relationships between AMH expression in the bovine anterior pituitary (AP) and oestrous stage, age and breed were evaluated. AMH mRNA expression was detected in APs of postpubertal heifers (26 months old) by reverse transcription-polymerase chain reaction. Based on western blotting using an antibody to mature C-terminal AMH, AMH protein expression was detected in APs. Immunofluorescence microscopy utilising the same antibody indicated that AMH is expressed in gonadotrophs. The expression of AMH mRNA and protein in APs did not differ between oestrous phases (P>0.1). We compared expression levels between old Holsteins (79.2±10.3 months old) and young (25.9±0.6 months old) and old Japanese Black females (89.7±20.3 months old). The APs of old Holsteins exhibited lower AMH mRNA levels (P<0.05) but higher AMH protein levels than those of young Japanese Black females (P<0.05). In conclusion, bovine gonadotrophs express AMH and this AMH expression may be breed-dependent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom