z-logo
open-access-imgOpen Access
The Antarctic ozone hole during 2015 and 2016
Author(s) -
Matthew B. Tully,
Andrew Klekociuk,
P. B. Krummel,
H. P. Gies,
Simon P. Alexander,
Paul J. Fraser,
Stuart Henderson,
Robyn Schofield,
J. D. Shanklin,
Kane Stone
Publication year - 2019
Publication title -
journal of southern hemisphere earth systems science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.404
H-Index - 7
ISSN - 2206-5865
DOI - 10.1071/es19021
Subject(s) - ozone , ozone depletion , atmospheric sciences , environmental science , ozone layer , volcano , satellite , climatology , meteorology , geology , geography , physics , astronomy , seismology
We reviewed the 2015 and 2016 Antarctic ozone holes, making use of a variety of ground-based and spacebased measurements of ozone and ultraviolet radiation, supplemented by meteorological reanalyses. The ozone hole of 2015 was one of the most severe on record with respect to maximum area and integrated deficit and was notably longlasting, with many values above previous extremes in October, November and December. In contrast, all assessed metrics for the 2016 ozone hole were at or below their median values for the 37 ozone holes since 1979 for which adequate satellite observations exist. The 2015 ozone hole was influenced both by very cold conditions and enhanced ozone depletion caused by stratospheric aerosol resulting from the April 2015 volcanic eruption of Calbuco (Chile).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here