z-logo
open-access-imgOpen Access
P2-7: Encoding of Graded Changes in Validity of Spatial Priors in Human Visual Cortex
Author(s) -
Yuko Hara,
Justin L. Gardner
Publication year - 2012
Publication title -
i-perception
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 26
ISSN - 2041-6695
DOI - 10.1068/if668
Subject(s) - prior probability , encoding (memory) , visual cortex , human brain , computer science , mathematics , psychology , neuroscience , artificial intelligence , pattern recognition (psychology) , bayesian probability
If the spatial validity of prior information is varied systematically, does human behavioral performance improve in a graded fashion, and if so, does visual cortex represent the probability directly? Cortical activity was measured with fMRI while subjects performed a contrast-discrimination task in which the spatial validity of a prior cue for target location was systematically varied. Subjects viewed four sinusoidal gratings (randomized contrasts of 12.5, 25, and 50%) shown in discrete visual quadrants presented twice. The contrast in one location (target) was incremented in one of the two presentations. Subjects reported with a button press which presentation contained the greater contrast. The target grating was signaled in advance by a cue which varied in spatial validity; at trial onset, small lines pointed to four, two, or one of the possible target locations, thus indicating the target with 25, 50, or 100% probability. Behavioral performance was 2.1 and 3.3 times better in the 100% probability condition than the 50% and 25%, respectively (p < .001, ANOVA). Unlike behavioral performance, cortical activity in early visual areas showed the same increase in response amplitude for cued versus uncued stimuli for both 100% and 50% probability (V1-V4, V3A all p < .18, Student's t-test, 25% had no uncued condition). How could behavioral performance improve in a graded fashion if cortical activity showed the same effect for different probabilities? A model of efficient selection in which V1 responses were pooled according to their magnitude rather than as a simple average explained the observations (AIC difference = −15)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom