z-logo
open-access-imgOpen Access
Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: Application to short alkanes and Xe/Kr mixtures
Author(s) -
Zhao Li,
Benjamin J. Bucior,
Haoyuan Chen,
Maciej Harańczyk,
J. Ilja Siepmann,
Randall Q. Snurr
Publication year - 2021
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/5.0050823
Subject(s) - adsorption , propane , metal organic framework , histogram , work (physics) , binary number , monte carlo method , energy (signal processing) , xenon , materials science , krypton , chemistry , thermodynamics , computer science , physics , organic chemistry , artificial intelligence , image (mathematics) , mathematics , statistics , arithmetic , quantum mechanics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom